Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus.

نویسندگان

  • Rainer M Figge
  • Jesse Easter
  • James W Gober
چکیده

In Caulobacter crescentus the partitioning proteins ParA and ParB operate a molecular switch that couples chromosome partitioning to cytokinesis. Homologues of these proteins have been shown to be important for the stable inheritance of F-plasmids and the prophage form of bacteriophage P1. In C. crescentus, ParB binds to sequences adjacent to the origin of replication and is required for the initiation of cell division. Additionally, ParB influences the nucleotide-bound state of ParA by acting as a nucleotide exchange factor. Here we have performed a genetic analysis of the chromosome partitioning protein ParB. We show that C. crescentus ParB, like its plasmid homologues, is composed of three domains: a carboxyl-terminal dimerization domain; a central DNA-binding, helix-turn-helix domain; and an amino-terminal domain required for the interaction with ParA. In vivo expression of amino-terminally deleted parB alleles has a dominant lethal effect resulting in the inhibition of cell division. Fluorescent in situ hybridization experiments indicate that this phenotype is not caused by a chromosome partitioning defect, but by the reversal of the amounts of ATP- versus ADP- bound ParA inside the cell. We present evidence suggesting that amino-terminally truncated and full-length, wild-type ParB form heterodimers which fail to interact with ParA, thereby reversing the intracellular ParA-ATP to ParA-ADP ratio. We hypothesize that the amino-terminus of ParB is required to regulate the nucleotide exchange of ParA which, in turn, regulates the initiation of cell division.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus.

In Caulobacter crescentus, the genes encoding the chromosome partitioning proteins, ParA and ParB, are essential. Depletion of ParB resulted in smooth filamentous cells in which DNA replication continued. Immunofluorescence microscopy revealed that the formation of FtsZ rings at the mid-cell, the earliest molecular event in the initiation of bacterial cell division, was blocked in cells lacking...

متن کامل

Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus

In the bacterium C. crescentus, the cellular homologs of plasmid partitioning proteins, ParA and ParB, localize to both poles of the predivisional cell following the completion of DNA replication. ParB binds to DNA sequences adjacent to the origin of replication suggesting that this region of the genome is tethered to the poles of the cell at a specific time in the cell cycle. Increasing the ce...

متن کامل

A mathematical model of ParA filament-mediated chromosome movement in Caulobacter crescentus.

Caulobacter crescentus uses the dynamic interactions between ParA and ParB proteins to segregate copies of its circular chromosome. In this paper, we develop two mathematical models of the movement of the circular chromosome of this bacterium during division. In the first model, posed as a set of stochastic differential equations (SDE), we propose that a simple biased diffusion mechanism for Pa...

متن کامل

ParABS System in Chromosome Partitioning in the Bacterium Myxococcus xanthus

Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequenc...

متن کامل

Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome

Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA-ParB-parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleopro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 47 5  شماره 

صفحات  -

تاریخ انتشار 2003